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Abstract

Students of human and machine vision share the belief that massively parallel
processing characterizes early vision. For higher levels of visual organization,
considerably less is known and there is much less agreement about the best
computational view of the processing. This paper lays out a computational
framework in which all levels of vision can be naturally carried out in highly parallel
fashion.

One key is the representation of all visual information needed for high level
processing as discrete parameter values which can be represented by units. Two
problems that appear to require sequential attention are described and their solutions
within the basically parallel structure are presented. Some simple program results are
included.

The preparation of this paper was supported in part by the Defense Advanced
Research Projects Agency, monitored by the ONR, under grant No. N00014-82-K-
0193, and in part by the National Science Foundation CER grant No. DCR-8320136.
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I. Introduction

The human brain is an information processing system, but one that is quite
different from conventional computers. The basic computing elements operate in the
millisecond range and are about a million times slower than current electronic
devices. Since reaction times for a wide range of tasks are a few hundred milliseconds
[Posner, 19781, the system must solve hard recognition problems in about a hundred
computational time steps. The same time constraints suggest that only simple signals
can be sent from one neuron to another. The human information processing system
is also adaptable, context-sensitive, error-tolerant, etc., in ways that far outstrip our
current computational devices and formalisms.

Students of human and machine vision share the belief that massively parallel
processing characterizes early vision. Computational, psychophysical and biological
findings agree on the extensive distribution of computation both in spatial
organization and along dimensions such as ocularity, size (spatial frequency) and
color. For higher levers of visual organization, considerably less is known and there is
much less agreement about the best computational view of the processing. But the
100-step argument suggests that, at least for simple tasks, people can do visual
recognition tasks much too fast for the processing to be serial. This paper attempts to
lay out a computational framework in which all levels of vision can be naturally
carried out in highly parallel fashion. In addition to the timing constraint, a
biologically plausible model must meet a number of additional computational
requirements. The limited number of computational units, their restricted
connectivity and very low rate of communication all impose severe constraints which
the model attempts to satisfy.

The rest of this introduction informally outlines a proposed model of vision
which supports the idea of parallel processing. Section 2 contains a brief review of
the connectionist computational model used in the technical sections of the paper.
Section 3 describes in some detail the parallel algorithms for high-level visual
recognition and how they satisfy a variety of constraints. The final section points out
some limitations on parallel processing in ' ision and lays out a connectionist model
of sequential visual attention.

The central problem of vision is taken to be the identification and location of
objects in the environment. The critical step in this process is the linking of incoming
visual information to stored object descriptions; this is called indexing from the
analogy of identifying a book from index terms. A system must also identify
situations and use this information to guide action. Following the standard usage in
computer vision, we divide the problem of visual recognition into three conceptual
levels: low, intermediate and high. Low level (or early) vision is characterized by the
local nature of its computations. This corresponds to Marr's primal sketch and to
anatomical structures from the retina through at least primary visual cortex. Typical [
low-level operations include image filtering, isolated feature detection and some local 0
relaxation or consistency calcualations. There is no conceptual difficulty in designing -------
massively parallel algorithms for these tasks and several existing systems do various
of these tasks in parallel.

Intermediate level vision (ILV) has two major goals: segmentation and the Codes
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calculation of invariants. The role of ILV is to reduce the incoming visual
information to a form that will be effective for the recognition step of high-level
vision. One requirement is that the I LV encoding capture the intrinsic properties of
objects independent of the particular viewing conditions in the current instance
[Barrow & Tenenbaum, 1978]. Recognition also requries that the individual objects
in a scene be separated so that they can be individually matched. Segmentation and
calculating invariants are mutually interacting computations, depending also on
context effects from high-level vision, among other things. Much of the current
research in computer vision is concerned with ILV calculations; the development is
far too rich to survey here. The computational character of these problems is much
more complex than that of early vision; there are unsolved problems in the stability
and efficienty of networks for ILV. But the general idea of parallel algorithms for
ILV is well understood and a number of partial implementations have been carried
out.

The research on parallel algorithms in computer vision has progressed to the
point where some general principles are becoming apparent. There appear to be
three computational paradigms that are easily adapted to massive parallelism: local
calculations, neighborhood function and Hough techniques. Successful applications
have been based on combinations of the three computational principles. Calculations
that are strictly localized to one area of an image are obviously easy to compute in
parallel up to the number of desired results. These include filters and edge detection
in early vision and local calculations of, for example, the brightness equation in
intermediate level vision.

The second major class of parallel computation is in neighborhood interactions or
relaxation [Hummel & Zucker, 1983]. Relaxation in low-level vision has been quite
successful, e.g. in smoothing edge and optic flow fields. In a massively parallel
system, one can have continuous interactions among strictly local calculations and
neighborhood relations. The same idea can be carried over to intermediate level
vision as was recognized early by Barrow and Tenenbaum [1978] and is embodied in
the smoothness constraint of the MIT school [Poggio & Torre, 1984]. The intrinsic
image diagram (Figure 1.1) of Barrow and Tenenbaum continues to be a good
characterization of parallel computation in intermediate vision. Notice that the local
interactions include not only neighbors in the same plane, but also calculations of
other invariants (planes) at the same point in the image.

The third of the comptuational principles is less straightforward but is the key to
much of the progress that has been made to date. This principle derives from Hough

* techniques [Ballard, 1984], which in turn can be traced back to histograms. The idea
is simply to count and compare things; the hard part is knowing what to count.
Hough techniques and their parallel realizations are particularly good for computing
global parameters from plentiful, but noisy local measurements. Typical applications
include calculating lines from edge data, illumination angle from surface patches or
rigid body motion from local flow vectors. In each case, the answer can be
characterized by a small number of parameters: counting the data consistent with
each possible answer is an effective solution technique. In a parallel network, all of
the relevant counts can be accumulated stimultaneously. The example Hough
calculations given above are in early and intermediate vision, but the technique
applies to indexing and high level vision as well.

Ip
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The idea behind applying Hough techniques to recognition is simple. Each visual
feature computed in the intermediate stage votes for the objects most consistent with
that feature. As an introductory example, we will consider the problem of
recognizing a known object that has been transformed and hidden by noise (Figure
1.2). The key constraint here is that the shape of the target is assumed to be known

'C, except for possible changes in position, rotation and scale. Under these conditions,
the sytem need only solve for four parameters: rotation and scale and translation in x
and y. The sequential algorithm for finding the masked object compares evey line in
the image with every line in the model. A given image line will match with a fixed
model line only for a particular choice of the four parameters. Many choices of
parameters get votes, but the (normally unique) choice of parameters that gets a
plurality of votes is the correct transform. We will describe the parallel
implementation of this scheme in Section 2, after the definitions of our formalism.
Of course, the example is greatly oversimplified and the remainder of the paper is
concerned with extending parallel recognition techniques to more realistic examples.

2. Connectionist Models

2.1 Background and Overviev%

Computer science is just beginning to look seriously at parallel computation: it
may turn out that conventional programs can be automatically translated into
massively parallel networks meeting the hundred-time-step constraint. But no one
has yet given the slightest indication of how this might be brought about. An obvious
alternative is to start with a computational formalism that has a clear mapping to
parallel implementation and attempt to build functional models of intelligent
behavior in those terms. If this approach is on the right track, it should prove
possible to construct better (clearer, more predictive) models in the parallel
formalism than in conventional computer languages. A number of workers in
psychology and artificial intelligence are finding these advantages in connectionist
models and this paper has definitely required such treatment.

The term "connectionist" comes from a shared assumption of most massively-
parallel computational formalisms. This feature arises from the observation that in

%" the psychological quantum of 1/10 second, only a small number (-6) of bit, of
information can be sent from one neuron to another by spike frequency. This means
that the conventional computer mechanism of passing complex symbolic structures
cannot be used directly and that the burden of computation must lie on the
connection structure of the network. There has been a great deal of recent work on
the properties of such systems [Amari & Arbib, 1982: Feldman & Ballard, 19821 and
on their applications.

There is currently a growing interest in both the abstract properties of
connectionist models and in their application to particular problems in the behavioral
and brain sciences. The Winter, 1985 issue of Cognitive Science is dedicated to this
work. To a large extent, applications -oriented efforts such as the current paper use
a representation where a single unit represents each item of interest such as a
concept, a line segment, and so forth, and are called localist models. Another line of
work [Hinton & Anderson, 19811 starts from the assumption that concepts are
captured by a "pattern of activity" in a large group of units. Most of this work is
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concerned with general properties of connectionist networks, particularly learning in
one form or another [Ackley et al., 1985). There are a number of positions between
the extreme distributed approach and the "grandmother cell" approach to
connectionist models. Some of these intermediate representations such as coarse-fine
coding play an important role in this paper and are good candidates for describing
physiological reality.

2.2 Units and Networks

As part of our effort to lay out a generally useful framework for connectionist
theories, we have developed a standard model of the individual unit. These units
have a very large number of incoming and outgoing connections and communicate
with the rest of the network by transmitting a simple value. A unit transmits the
same value to all units to which it is connected. The output value is closely related to
the unit's potential and is best described as a level of activation. A unit's potential
reflects the amount of activation it has been receiving from other units. All inputs are
weighed and combined in a manner specified by the site functions and the potential
function in order to update a unit's potential. A more technical description follows.

A network consists of a large number of units connected to a large number of
other units via links. The units are computational entities defined by:

{q} :a small set of states, (fewer than 10)

p :a continuous value called potential

v :an output value, approximately 10 discrete values

i :a vector of inputs ii, i2, ..., in (this is elaborated below)

together with functions that define the values of potential, state and output at
time t + 1, based on the values at time t:

Pt+l ( --- P(it.pt,qt)

qt+I <- Q(it,pt,qt)

V t+ 1  ( ----- V (it,p r~q t) .

A unit need not treat all inputs uniformly. Units receive inputs via links (or
connections) and each incoming hnk has an associated weight. A weight may have a
negative value. A unit weighs each input using the weight on the appropriate link.
Furthermore, a unit may have more than one "input site" and incoming links are
connected to specific sites. Each site has an associated site-function. These functions
carry out local computations based on the input values at the site, and it is the result
of this computation that is processed by the functions P, Q and V. The notion of sites
is useful in defining interesting unit behavior such as OR-of-AND units where the
unit responds to the maximum activation at any of its sites and each site is

4i conjunctive. An example of this is shown in Figure 2.1 where a unit representing a
physical size of 4 can be activated by either retinotopic size = 4 AND depth = 1

4
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OR retinotopic size = 2 AND depth = 2. This computational exercise is not, of
course, intended as a serious model of size constancy. There are several additional
basic computational points that arise from the network of Figure 2.1

Figure 2.1: Relations among depth, retinotopic size, and physical size.

First notice that there is a separate unit dedicated to each possible value of each
of the three parameters: depth, retinotopic size and physical size; this unit/value (or
place coding) representation is central to all of our models. In this network, as in
many others, a consistent state should have only one active value for each parameter.
We assume that such networks have mutually inhibitory connections (shown only for
depth) among the competing values for each parameter. This mutual inhibition or
winner-take-all construction is used in many models and appears frequently in this
paper.

Assume for simplicity that the system is viewing a small circle centered on and
orthogonal to the line of sight. Then the network of Figure 2.1 specifies a fixed
relation among retinotopic size, depth, and physical size. One way to view this is that
a given %alue of depth specifies a mapping from retinotopic to physical size- such
mappings will be used frequently in the model. The network actually does something
computationally much more powerful; it embodies the mutual constraints among the
three parameters. If, for example, the physical size of an object (e.g. a person) were
known, this would determine the depth value. The computational notion of a
network embodying mutual constraints is the fundamental paradigm of connectionist
models. The behavior of such systems is characterized by states where a coalition of
mutually reinforcing units becomes stable and suppresses its rivals. The two
alternative readings of the Necker cube in Figure 2.2 can be nicely interpreted as
alternative stable coalitions. Notice that the flip between readings requires the
simultaneous reinterpretation of perceptual features at many levels.

Figure 2.2: The Necker Cube

The stable coalition mechanism also has implications for the "grandmother cell"
issue. Even the 3-unit loop capturing a size-depth relationship could be viewed as a
"pattern of activity" of the three units. More generally, in any connectionist network
there will always be many active units forming one or more coalitions. This does not
suggest that one can usefully characterize the network in terms of diffuse system
states instead of units with particular functions. On the other hand, a unit will
participate in several coalitions and need not have a simple response pattern. There
are both biological and computational advantages to using the simultaneous activity
of multiple units to code some information of interest. Notice also that a coalition is
not a particular anatomical structure, but a temporarily mutually reinforcing set of
units, in the spirit of Hebb's cell assemblies [Jusczyk, 1980].

Another use of these networks is in the parallel realization of Hough transform
techniques [Ballard & Brown, 19821. Figure 2.3a depicts the well known scheme
whereby edges (on the left) each " ote for" the slope (6) and distance (p) of the line
most consistant with the edge. Figure 2.3b shows how a simple network can carry outthese calculations in a fulls parallel fashion. The networks for the generalized Hough
techniques used in Figure 1.2 are more complex, but follow the same principles
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[Ballard et al., 1984]. The idea of computing the best fit in a discrete parameter space
is central to this paper and appears to be a key to parallelism in intermediate and
high level vision.

The 100 billion units that comprise the human brain also impose constraints on
our models. For example, suppose we wanted to represent 10 values each of ten low-
level visual features such as position, orientation, hue, contrast, motion, etc. Having a
separate unit for each vector of values would require 1010 units which is clearly too
many. Suppose instead we had units which were precise in only one dimension. Then
we would need only 10 x 10 units but it would take the simultaneous activity of ten
units to specify a full vector of values. There are a range of intermediate
constructions [Hinton, 1981; Feldman & Ballard, 1982]. One of these techniques
(coarse-fine coding) appears close to the coding used in primary visual cortex, where
units are broadly tuned in several dimensions and fine-tuned in one stimulus
dimension.

2.3 Memory and Change

In the previous section, we saw how fixed connectionist networks could be
* designed to compute functions and relations quite efficiently. These fixed networks

could have a certain amount of built-in flexibility by explicitly incorporating
parameters. One can view the depth networks of Figure 2.1 as computing the
physical size of objects from the retinotopic size, parametrized by depth.

But there are also a number of situations where it does not seem plausible to
assume the existence of either fixed or parametrized links. Obvious. though artificial,
examples are the paired-associate tasks with nonsense syllables used by psychologists.
A closely related real task is learning someone's name or the Hebrew word for apple.
One cannot assume that all the required connections are pre-established, and it is
known that they do not grow rapidly enough [Cotman et al., 19811. What does seem
plausible is that there is a built-in network, something like a telephone switching
network, which can be configured to capture the required link between two units.
We refer to this as establishing a "dynamic connection" in the uniform network. We
are assuming (as is commonly done) that the weight of synaptic connections cannot
change rapidly enough to do this, so that all dynamic connections are based on
changes in the potential (p) and state (q) of individual units. The other basic
constraints that we impose on possible solutions are that units broadcast their outputs
and that there is no central controller available to set up the dynamic connections.
These assumptions differ from those in the switching literature, and the results there
don't carry over in any obvious way. The assumption is that only one dynamic
connection is made at a time, but that several (e.g. 7 ± 2) must be sustainable
without cross talk.

A sample task is to make arbitrary dynamic connections between two sets of units
labelled A... Z and a... z respectively. These could be words in different languages,
paired associates, words and images, and so on. Figure 2.3 depicts the situation for
three units on each side.

The problem is how to establish, for example, the link B-c without also linking,
e.g. B-b, since the network is originally uniform. More precisely, we require an

_,,_X



L8
algorithm which, given the simultaneous activation of B and c, will establish p and q
values in the units of our network such that (for some time) activating B will
stimulate c but not a or b. For the most part we have considered symmetric networks
where the "dynamic connection" B-c will also have the activation of c stimulate B
and not A or C. It should be clear that primitive units without any internal state
(memory) will not be usable in such tasks.

The basic solution to the dynamic link problem in connectionist networks relies
upon mutual inhibition between the alternative inter-units. For notational
convenience, we represent this situation as an array of units, with the understanding
that the array is a winner-take-all network. If the only active link were B-c, then only
the three starred units would be active. Uniform dynamic link networks like those
described above are an essential part of our model of how visual objects are linked to
locations.

Figure 2.3: Uniform dynamic link network.

The network of Figure 2.3 uses a separate intermediate unit dedicated to each
possible pairing. The starred unit for B-c is in two winner-take-all networks, the
column which is "inputs to c", and the "outputs from B" net which is drawn in

*i explicitly. When B-c is active, it blocks all other uses of both B and c, which is the
desired effect. The fact that our solution requires N2 intermediate nodes to connect
2N units makes it impractical for linking tip sets of 105 units like an educated

*person's vocabulary. There are, however, more complex interconnection networks
which require about 4N31 2 units [Feldman, 19821. That paper also gives detailed
descriptions of the unit computations required and some examples.

2.4 Random Interconnection Networks

There are both anatomical [Buser, 1978] and computational reasons for looking
carefully at random interconnection schemes. One possibility is to use random
interconnection networks (in place of the uniform networks above) to dynamically
connect arbitrary pairs of units from two distinct layers. As before, each unit is
postulated to have links to some large number of intermediate units, whose role is
strictly a linking one. In any random connection scheme there will be some finite
probability .hat the required path is simply not present. The remarkable fact is that
this failure probability can be made vanishingly small for networks of quite moderate
size [Feldman, 1982]. The idea is to have k (two or more) layers of intermediate units
so that there is a tree of Bk + I links across the network, where B is the outgoing
number of branches from each unit. This result has been known for some time and
has been used as the basis of a proposed highly parallel computer [Fahlman. 19801.

It is premature to speculate on the degree to which the association cortices of
animals are more like the uniform or random networks (if either) but we can say
something about the computational advantages of each. Uniform networks appear to
be most useful for maintaining mans simultaneous d.namic links which are easily
turned on and off. They could only be expected to occur in well-structured stable
domains because of the strong consistenc requirements. In general, we would like to
view uniform dynamic links as a mechanism roughly equivalent to modifiable or

I
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conjunctive connections where the number of possibilities is too great to wire up
directly.

Random interconnection networks are not as stable and predictable as uniform
ones, but have some other advantages. The lower requirements on the number and
precision of wiring of intermediate units are clearly important. But the most
interesting property of the random networks is the relative ease with which they
could be made permanent. Suppose tha instead of rapid change we wanted
relatively long term linkage of units from the two layers. Our model specifies that
this must be done by changing connection weights wj. The point to be made here is
that the random networks already have some units biased towards linking any
particular pair from the two layers. By selectively strenghthening the active inputs
(on command) of the most appropriate units, the network can relatively quickly forge
a reliable link between the pair. The details of how we propose that this comes about
are given in Feldman [1982]. Of course, once this has happened, the network will not
be able to represent competing dynamic links, but its ability to capture new pairings
will remain intact until a large fraction of the nodes are used up (cf. [Fahlman,
1980]).

The fact that random (as opposed to uniform) interconnection networks could be
readily specialized suggests that random networks may play an important role in
permanent change and memory. After enough training, the originally random inter-
connection network would become one in which there was essentially a hard-wired
connection between particular pairs of units from the two spaces.

The problem with this scheme as a proto-model of long term memory is that
most of our knowledge is structured much more richly than paired associates. It is
technically true that one can reduce any relational structure to one in~ohing only
pairings, and Fahlman [1980] suggests that the best current hardware approach is
along these lines. But the intuitive, psychological and physiological [Wickelgren,
1979] notions of conceptual structures involve the direct use of more complex
connection patterns. It turns out that the results on random interconnection layers
extend nicely to the more general case.

The proposed solution to recruiting units to capture new associations depends on
the properties of randomly connected graph structures. It turns out that a random
graph of N nodes each connected to about VN others has very useful statistical
properties. (Think of N as about 1,000,000 and / N as 1,000 for neural networks). If
some small number of nodes (say 30) are chosen at random, the important question
is the probability of there being a small network that includes the chosen nodes and
is sufficiently well connected to form a stable coalition (as defined in Section 2.2). If
there is such a sub-network, it could be recruited to represent the new concept whose
features are represented by the originally chosen nodes. For random networks of the
type described above, the probability of there being a binding sub-network is quite
high and the dynamics of recruiting the concept structure also appear to be feasible
[Feldman, 1982]. Notice that the concept would be represented by a few dozen units,
providing another example intermediate between unit/value and diffuse
representations.

This is the basic mechanism that we believe SUppOrts associative learning and

5.7
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appears to be close to what Wickelgren [1979] had in mind. If random chunking
networks can be made to support short-term associations through coalitions, the
usual weight-changing algorithms would enable the associations to be made
permanent [Sutton, 1981; Feldman, 1982]. Such mechanisms are postulated to
underlie the grouping of an object instance with its properties and the structuring of
a complex scene into a "situation" network. More generally, the technical notions of
uniform and random dynamic links are essential to all local connectionist models, the
current model of vision and space being the most comprehensive effort to date.

3. Parallel Visual Recognition

The central problem addressed by this paper is how a visual system can recognize
objects and situations with a delay of less than 100 times the speed of its basic
computing units. The technical mechanisms presented in the previous section will
enable us to look at this problem in more detail. We have already seen how a system
built along the lines suggested in Section 2 could be made to recognize a fixed, two-
dimensional object in a very cluttered scene. Many of the same ideas will carry over
to more complex vision problems, but there are also a number of new techniques
needed.

One major addition to the notions examined above is the introduction of
hierarchical object descriptions. Outline figures can be described directly in terms of
their component lines, but this becomes infeasible in more realistic visual
enevironments. Daniel Sabbah [Sabbah, 19851 has developed a connectionist system
that demonstrates how the concepts of Section 2 can be used to recognize objects in a
fairly complex domain, that of Origami objects. Origami-world was introduced by
Kanade [1978] and shown to be an interesting task domain, especially for studying
the role of skewed symmetries for determining the orientation of planes in space.
Sabbah's work explores the use of connectionist networks to build fast and reliable
solutions to this problem.

Figure 3.1 shows the behavior of the program when given a line drawing
depiction of an Origami chair. The crossed lines are an indication of where the
program has deduced the presence of a plane in space. Figure 3.2 presents a
hierarchical description scheme used in the system. The need for a hierarchical
description should be clear; a single L-joint in the image could correspond to a huge.
range of appearance possibilities for the chair. The program includes intermediate
level networks that compute more complex joints and ones that compute
parallelograms in the image. These features can then be combined to provide
effective indexing for objects like the Origami chair. Sabbah's program actually does
rather more than this. It incorporates "top-down" links from a 2-dimensional shape
to the L-joints that could give rise to that shape (in a fixed position). This enables the
system to be somewhat noise resistant and helps deal with the problems of occlusion.
The program also uses T-joints as explicit occlusion cues. This enables it to deal
correctly with scenes containing a modest amount of occlusion. The treatment of
more general scenes with occlusion is one of the unsolved problems discussed in
Section 4.

Sabbah's Origami world system used hierarchical descriptions and threedimensions, but in one way was less sophisticated than Ballard's object finder. The
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Origami program did not explictly compute the viewing transform and actually had
to incorporate separate networks for the different appearance possibilities of objects
like the Origami chair. We have been working recently on a more general
connectionist vision system design that is conceptually adequate to deal with a
significant range of natural scenes. This is much more complex and is not completely
implementable, but a description of it should help provide insight into the problem
and our proposed solutions. The proposed parallel vision model and its relation to
behavioral and biological findings have been described in detail elsewhere [Feldman,
1985]. For our purposes, all that is required is an overview of how the system
functionality is divided among four representational frames (Figure 3.3).

The representation of information in the first frame is intended to model the view
of the world that changes with each eye movement. The second frame must deal with
the phenomena surrounding what has been called "the illusion of a stable visual
world." A static observer has the experience of (and can perform as if he held) a
much more uniform visual scene than the first foveal-periphery frame is processing
at each fixation. One can think of the second frame as associated with the position of
the observer's head; this is an oversimplification, but conveys the right kind of
relation between the two frames. Of course, neither of these frames is like a
photographic image of the world. Light striking the retina is already transformed,
and the layers of the retina, the thalamus, and the visual cortex all compute complex
functions. The crucial difference between these two frames is that the first one is
totally updated with each saccade and the second is not. The current model also
assumes that the first (retinotopic)frame computes proximal stimulus features and the
second captures distal (constancy, intrinsic) features as well as being stable: it is
therefore called the stable feature frame.

The third and fourth representational frames are both multi-modal and thus
unlikely to be the same as the first two. The third representation is not primarily
geometrical and will be described in the next paragraph. The fourth, or
environmental frame, is intended to model an animal's representation of the space
around it at a given moment. It captures the information that enables one to locate
quickly the source of a stimulus from sound, wind, smell, or verbal cue, as well as
maintaining the relative location of visual phenomena not currently in view. For a
variety of reasons, the model proposes a single allocentric environmental frame
which gets mapped, by situation links, to the current situation and the observer's
place in it.

The final representational frame to be considered is the observer's general
knowledge of the world, including items not dealing with either vision or space. We
follow the conventional wisdom in assuming that this knowledge is captured in
propositional (relational) form, modeled in our case by a kind of semantic network.
One class of knowledge encoded will be the visual appearance of objects encoded as
a collection of relationships among primitive parts. These descriptions have much of
the character of Minsky's conceptual frames [19751 and of the object-centered frames
of, for example, Ballard [1984] and Hinton [1981al. Since the other three
representations are geometrically organized, we will refer to the collection of
semantic knowledge as the world knowledge formulary, to emphasize its nature as a
collection of conceptual relations. The formulary will carry much of the burden for
integrating information from the other three frames and is far from adequately

-A . 1..
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worked out in this paper. But all we need for now is the notion that the network
representation is likely to be quite different from that of the retinotopic, feature, or
environmental frame. All of this indicates that even a provisional model of vision
and space will require at least four representational frames.

The central problem is linking visual feature information with the knowledge of
how objects in the world can appear. The problem of going from a set of visual
features to the description of a situation will be called the indexing problem, by
analogy with looking up something in an index. The small world we will consider in
detail has exactly six distinct visual features each with 10 possible values. Assume for
now that any object in the small world can be characterized by some particular set of
values for the six features. This would mean that each object has a distinct 6-digit
visual code (not unlike a zip code). If the system could always reliably extract the
values for the visual features, it would not be hard to identify which objects were in
which places in the current environment. No additional problems would arise if
some objects had multiple codes among the 106 = 1,000,000 available. But the
system, as specified, would totally break down if two objects needed to share the

"- same code, i.e. looked identical relative to our set of features and values. We will
have to address the question of ambiguous feature sets later.

0 The six particular visual features which we have chosen are intended to elucidate
the major scientific problems in intermediate level vision and would not be the best
choice for a practical computer vision system. We assume for now that the best value
at each position of the current view is continuously maintained by parameter
network computations [Ballard, 1984] which will be elaborated below. Some of the
parametrizations are turning out to be rather subtle. For example, it appears that
natural textures can be well characterized by fractal parameters [Pentland, 1984].
Features such as size and shape, which cover several units, are assumed to be
represented by a single unit at the center of the region covered. Of course, the
problem of breaking up the feature space into meaningful regions is a central one
and the model will have to address it in detail.

The six visual features used in indexing are the following: lightness, hue, texture,
shape, motion, and size. Obviously enough, ten values of these features (even in
logarithmic scales) is not enough to characterize visual appearance in the real world;

-, -. but the small world is rich enough to exhibit most of the required problems. The
model assumes that the six features are continously represented in six parallel 10 x 10
arrays which are intended to map the currently visible external world. There is also
assumed to be a (10 valued logarthmic) depth map maintained as part of the same
structure (Figure 3.3). The depth map is needed for calculating constancy features
such as object size and is also used directly in mapping the environment. The depth
map is assumed to be calculated cooperatively with the six feature planes, using
binocular and other cues. These seven parallel arrays, along with some auxiliary

. structure, comprise the stable feature frame which is one of the four cornerstones of
'-: the model.

- - - Our first notion of appearance models was that each object could be
characterized by one or more sets of feature values. For objects that are sufficiently

. simple, this is not a bad approximation. You can probably name an object that is an
approximately 1.5" white sphere and uniformly pock-marked even before seeing it

.4-
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hook into the rough. But for complex objects like a horse or Harvard Square, the
single feature set isn't even the right kind of visual information. Our way of handling
the appearance models for complex objects and situations is taken from current Al
practice. We assume that the appearance of a complex object is represented (as part
of one's world knowledge) as a network of nodes representing the "appearance
possibilities" of simpler components and relationships among them (Figure 3.5).
There are several unsolved technical questions about the number of separate views
maintained, and how much flexibility should be encoded in a description, but the
general idea of hierarchical network is all we need at the moment.

Recall that the naive version of indexing was to use the 6-digit visual feature code
to look up the name of the object with that description. Complex objects are
assumed to be composed of parts, each part being either another complex object or a
visual element that can be indexed by the 6-digit code. Now recall that all of our
structures are assumed to be parallel and continuously active. This means that
"indexing" can be continuously in progress between different areas of the feature
frame and networks of visual appearance knowledge in the world knowledge
formulary. The crude version of this idea is to assume that each set of visual features
(for a point in the 10 x 10 feature frame map) picks out (indexes) the visual element
which is appropriate. If this were to happen, it is not hard to see that a complex
visible object would have many of its visual elements selected simultaneously and
should therefore be recognizable. Recognition of an object or situation is modeled as
a mutually reinforcing coalition of active nodes in the world knowledge frame. The
mutual excitation of feature and model networks also involves top-down, context,
links from visual elements to the feature units that are appropriate.

In order to make these notions more precise and eliminate the ghosts from our
machine, we must describe all of this in considerably more detail, using the technical
definitions of Section 2. The various components of both the feature frame and
world knowledge frame will be elaborated in terms of the "units" of Section 2.
Obviously enough, we will need separate units for each of the 100 spatial positions in
each of the seven separate maps. In fact, it is also important to follow the unit/value
principle and require a separate unit for each value of each cell in the maps above,
giving a total of 7000 units. Following the connectionist dogma, we assume that
visual elements are units which are connected to the appropriate set of visual-feature-
value units. For example, Figure 3.4 shows how golf and ping pong ball descriptions
in the world knowledge frame might be connected (indexed) by visual features.
Having a separate unit for each feature value and for each visual element allows the
system to simultaneously maintain several possible interpretations of the scene. This
essential information processing requirement is unachievable in conventional
computational schemes.

It is easy to see how to make connections do the same job as the index codes.
Each code for a visual element is mapped into a conjunction of links from units
representing the appropriate value of each feature. A visual element with multiple
codes has several disjunctive "dendrites," one for each code. Visual elements that are
part of a complex object are also linked into a network for representing the
appearance of the object (Figure 3.5).

Complex objects (and situations) are represented as networks (in the world

-%2..-
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knowledge formulary) of nodes describing visual elements or other complex objects.
There are tremendous problems of several different kinds in these semantic network
models; these are discussed by Shastri & Feldman [19841. Our goal here is just to
provide a plausible (though crude) model of how network representation of visual
appearance could fit in the four-frames paradigm.

The basic idea is that each visual element of a complex object is represented by a
node that corresponds to a particular set of feature values as computed in the feature
frame. Since indexing from features to elements occurs in parallel, there will usually
be several simultaneously active element nodes for a complex object currently in
view. This simultaneous activation of subparts will tend to cause the correct complex
objects to be activated, independent of the details of how the relationships among the
subparts are modelled. When we consider the details of complex object
representations, a number of difficult technical problems arise. This is discussed in
detail in Hrechanyk & Ballard [1982], and we will be content here with a loose
discussion, based on the example of representing the visual appearance of horses.
Recall that the world knowledge formulary visual appearance models are far from
complete -- they are more like a verbal description of something not currently in
view.

Obviously enough, the side and bottom views of a horse have relatively little in
Y71 common. Even within the side view, the horse could appear in a variety of

orientations and scale configurations and the relative positions of its subparts could
also differ considerably. We must also account for the fact that there could be several
distinguishable horses in a scene and that some of these may be partially occluded.
Our current solution, depicted in Figure 3.5, involves instance nodes, separate sub-
networks for different views and cross-referenced structural descriptions. The
prototype horse has a general hierarchical description where, e.g., the trunk is
composed of a body, legs and a tail. What visual elements might be involved in
recognizing a horse will depend on whether it is a front, side or other view. Thus the
matching process would select together a prototype and a view which best matched
the active visual elements. As always, there is assumed to be mutual inhibition
among competing object descriptions and view nodes.

4. Limits on Parallelism

The main issue addressed in this paper is how much of all this could be done in
parallel with reasonable amounts of hardware (of the scale of the brain). There
appear to be two separate places in the system where parallelism breaks down. The
first problem that may require sequential processing is the abstraction of visual
features from their spatial location in the intrinsic image or stable feature frame. The
basic problem is combinatorial. Suppose one wanted to use collections of feature
values to index into world knowledge. Even with as few as six features having ten
values each, one gets 106 separate primitives. If we had a separate unit for each point
in a 10002 image (typical of the retina or moderate resolution images), it would take
1012 units, which is more than our limit for the entire system. Realistic numbers for
features and values clearly preclude this computational solution.

The fact that there are not enough units to denote one to each collection of
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features at each point in the visual field is a classic problem for parallel models. One
common form of the question is to ask how a system can avoid detecting a red
square when a red circle and a blue square are simultaneously present [Feldman &
Ballard, 1982]. Our solution to this problem involves conjunctive connections
(Section 2.2) and spatial coherence. The idea is to employ spatially invariant units to
detect collection (here pairs) of specific feature values e.g. a pocked sphere. There is
assumed to be only one "pocked sphere" unit, but the activity of its inputs is
conjoined so that two active inputs must be from the same point in space. The
number of units required for this coding is rather modest. For the small world of six
ten-valued features, there would be 15 x 102 or 1500 feature-pair units as opposed to
the 100,000,000 that would be needed to encode a feature vector at every position in
the 10xl0 field. There are a variety of other ways to reduce the number of required
units to a feasible number, but they all share the problem of vulnerability to
confusion (crosstalk).

One abstract way to envision the crosstalk problem is to notice that any encoding
of the space of feature vectors causes some sharing of codes. The system will not be
able to distinguish two inputs that map to the same code. As a concrete example, the
simultaneous apppearance of an orange and a flying ping-pong ball might activate
golf-ball in the network of Figure 3.4. People do form such illusory conjunctions
under certain conditions [Treisman, 19821, but the problem does not arise in normal
vision. This is partly explainable b) mutual inhibition by other percepts, but there
are good reasons to believe that sequential processing is used to avoid crosstalk. If
the system could restrict input so that it came from only a small area of the field, the
problem of potential crosstalk would be greatly reduced. This idea of sequentially
focussing attention appears to be universally applicable to connectionist networks
and fits quite nicely with the psychologists notion of cc ert attention [Posner &
Cohen, 19841. There are a number of open issues [Feldmati, 1985], but it does seem
that sequential attention is the best known solution to the problem of crosstalk in a
parallel system of bounded size.

The other place where parallelism in higher level vision appears to break down is
related, but more subtle. Consider the recognition network for horses in Figure 3.5.
Also assume that the visual feature sets are represented independently of their
position, as shown in that figure. A network like Figure 3.5 would respond positively
to an image in which the features of a horse were all present, but were totally
scrambled in position and relative orientation, because the features have been
abstracted from their spatial location. The relational information among features has
been lost in the parallel indexing process. This problem of illusory conjunctions and
misguided recognition does arise in special situations [Treisman and Gelade, 1980;
Thompson 1980] but not in normal vision.

There is one solution to this scrambled image problem that will occur
immediately to any vision researcher -- junction features. One could add to our
mechanisms recognizers for junctions of features analogous to the L- and T- joints of
blocks world vision. An image would hav e to match not only the individual features
but also the junctions to be recognized. This does help considerably, but some
confusions still can arise, particularlN in scenes with occlusion. The only general
solution we have found to this problem again requires sequential processing.
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Even with sequential processing allowed, verifying the structural relations

constituting something like a horse is not a trivial problem in connectionist
modelling. A program recently developed by D. Plaut [1984] points out some of the
difficulties in this task and how they may be be overcome. Because our simulator was
so slow, the simulation is carried out in a pico world where visual input is confined
to a hexagonal grid of ten cells (Figure 4.1). Figure 4.1a depicts a toy train that is
composed of a large and a small shiny red cylinder and two small dull brown
spheres. The individual visual features are idealizations and their computation was
not part of the program. Figure 4.1b shows how the individual features are combined
(in parallel) to form feature collections which, in turn, index possible models of
simple toys. A technical point is that the program employs feature-pair units (such as
sml. sph. for small sphere) that force the two feature values to come from the same
spatial position for the unit to become active. In such a network a small brown dull
sphere anywhere in the image will cause the appropriate unit to be activated. As we
mentioned before, if enough of the parts of the toy train are activated, the "train"
node will be effectively indexed. But this is not the end of the recognition process.

For one thing, the train in Figure 4.1 is translated and rotated. As we discussed
earlier, there are good ways to compute image to model transforms in connectionist
networks: Figure 4.2 depicts such a network for our pico world. The idea here is to
use the position and orientation of some major part of the object, here the train
body, to determine the transform. By focussing attention on the large red shiny
cylinder and exploiting the top-down connections back to spatial location units, the
system can determine (i.e. activate) the parameters of the viewing transform. This
obviously must be done sequentially for each object in the scene, but is only
preliminary to the main process of model verification.

Recall that the central problem was verifying the relationships among the
component parts of an object such as a toy train. Notice that junctions alone will not
distinguish the toy train from an object with the smokestack and one of the wheels
switched. Our solution to the structure mapping problem involves sequentially
verifying that each part is in the appropriate relation to its neighbors. The
connectionst implementation of this scheme is suggested by Figure 4.3.

The verification process begins with the principal part used to compute the
viewing transform as in [Marr & Nishihara, 1978; Hrechanyk & Ballard, 19831. Each
subpart is checked in turn, using a connectionist routine [Shastri & Feldman, 1984] to
select a particular part, compute where it should be and then focus attention on the
appropriate part of space. For each part, its relative position in the model and the
current viewing transform combine to determine its expected position in the image.
In Figure 4.4, the train top is one unit to the upper right of the body in the model,
and the viewing transform is a rotation of 600 and a translation of (2,2). The network
shown combines these values to activate the position (3,1) as the expected location of
the top. By allowing input only from this location (i.e. attending only to it), the
program is able to test for the presence of the right primitive in the right place. The
details of this process and its extension to more complex problems is discussed in
[Hrechanyk & Ballard, 1983: Plaut, 1984].

Obviously enough, the current program is very primitive, but it does show a
number of things. Parallel indexing from intrinsic features appears to be feasible and
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extensible to large problems. The parallel computations of a viewing transform from
model to image is feasible at least for unoccluded objects with an identifiable
orientation. Relational information lost in the parallel indexing process can be
regained by sequentially attending to parts of a figure and the rest of the mechanism
continues to be fully parallel. The major open questions involve extending these
ideas to realistic domains, including occlusion and relating these algorithms to the
intriguingly similar results on human eye-movements and attention.

Although the application of connectionist models to vision is at a very early stage,
the results have been quite encouraging. It appears that low, intermediate and high
level visual processing can all be expressed well in the formalism, often better than in
any other known way. The computational limitations that seem to be inherent and
the natural solution to them map nicely onto what is known from brain and
behavioral studies. Our current efforts include extending the ideas to harder
problems, carrying out more detailed simulations (using a parallel computer) and
working closely with colleagues in other disciplines to test specific hypotheses on
natural vision.
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